-5.1 ABOUT THE INSTITUTE

The Board of Regents approved the curriculum leading to the degree of Bachelor of Science in Electrical Engineering (B.S. EE) on January 10, 1916. Eighty-eight years later, in 1994, the Department of Electrical Engineering transitioned into the Department of Electrical and Electronics Engineering when two additional undergraduate programs were created—the Bachelor of Science in Computer Engineering (B.S. CoE) and the Bachelor of Science in Electronics and Communications Engineering (B.S. ECE) programs. Aside from these three undergraduate programs, four graduate degree programs are offered: Master of Science and Master of Engineering in Electrical Engineering, and the Doctor of Philosophy and Doctor of Engineering (Electrical and Electronics Engineering) programs.

To enhance its role as the country’s premier institution for research and higher learning in electrical and electronics engineering, the Department was officially transformed into the Electrical and Electronics Engineering Institute on October 24, 2008.

From its humble beginnings at UP Manila, transferring to Melchor Hall in UP Diliman, then the German Yia Hall, and the National Engineering Center (NEC), in 2001 the Department finally moved into its own building along Velasquez Street in UP Diliman. An additional building with a lot area of 3875 sq.m. and floor area of 7,500 sq.m. was inaugurated in 2015, while two more structures housing the Microsatellite Research Facility are expected to be constructed in 2016. These facilities collectively encompass twenty-seven research and instructional laboratories, learning facilities such as lecture rooms and meeting spaces, and student and staff work and office spaces.

5.2 VISION AND MISSION

The Institute’s basic mission is two-fold:

- to produce excellent and innovative engineers who are motivated and committed to serve the nation, and
- to advance the field of electrical and electronics engineering.

To fulfill this mission on a nationwide scope and scale, the EEE Institute envisions itself to become the National Institute of Electrical, Electronics, and Computer Engineering as it continues to gain international recognition, achieves national impact and becomes globally significant. The Institute celebrates its centennial in 2016 with the theme "Towards a New Century of Innovative and Visionary Engineering, Education, and Research."

5.3 UNDERGRADUATE PROGRAMS

The Computer Engineering, Electrical Engineering, and Electronics and Communications Engineering undergraduate programs produce innovative engineers committed to serve the nation through the practice of the electrical and electronics engineering profession and its allied fields. The Bachelor of Science in Computer Engineering (B.S. CoE) program develops engineers who design and implement a broad spectrum of computing systems and components, ranging from integrated circuits, embedded systems, computer networks, and software applications. The Bachelor of Electronics and Communications Engineering (B.S. ECE) program trains engineers who analyze, plan, design, measure, and operate electronic and communication devices and systems. The Bachelor of Science in Electrical Engineering (B.S. EE) program produces engineers who model, analyze, plan, design, measure, operate, and control electric power systems. These three undergraduate programs work closely together to provide students a unique opportunity for cross-curricular learning from all of these areas while pursuing specific undergraduate degrees, enabling them to understand new, complex and hybrid systems, and allowing graduates to rapidly adapt to the continuously-changing technology landscape.

The curricula for the B.S. CoE, B.S. ECE, and B.S. EE programs may be found in Section 5.8 of this Catalogue, while undergraduate course offerings may be found in Section 5.11.

5.4 GRADUATE PROGRAMS

The graduate programs of the Institute provide advanced training and specialization in a broad range of areas in electrical and electronics engineering and its allied fields to prepare students to solve complex technological problems and to contribute new knowledge to the field. Our graduate programs provide the country with a pool of highly qualified electrical and electronics engineers who carry out creative and challenging work in research, development, design, technology management and university instruction.

Master of Science in Electrical Engineering

The Master of Science (M.S.) program is a research-oriented degree program targeted primarily at academics and researchers. Prospective students in this program intend to undertake research towards enhancing the delivery of higher education in academic institutions or the development of new technology in government and industry research institutions. M.S. students undergo coursework and get trained in research through immersion in research laboratories, and write a thesis documenting the findings and contributions from their research work.
Master of Engineering in Electrical Engineering

The Master of Engineering (M.Eng.) program offers an advanced professional degree targeted primarily at industry practitioners and professionals. Prospective students in this program seek to enhance their skills and knowledge for career advancement and towards supporting higher value engineering activities in their respective institutions. As such, the program supports the development of local engineering industry by enhancing the capability of its workforce to undertake higher value engineering work. M.Eng. students may flexibly tailor their coursework based on their learning or professional objectives: they may even opt to engage in research work, directed study, or project work within their program of study.

Doctor of Philosophy in Electrical Engineering / Doctor of Engineering in Electrical Engineering

The Doctor of Philosophy (Ph.D.) and Doctor of Engineering (D.Eng.) programs produce experts capable of conducting independent investigation and study, producing original contributions to the fundamental knowledge in the field (Ph.D.), or solving engineering problems of substance and developing solutions in a creative and distinguished manner (D.Eng.). Doctoral students undergo an intensive program of study and research in exciting, cutting-edge areas of technology, and write a dissertation documenting their journey and findings from their investigation. Although the typical entrance credential for admission into the doctoral programs is a master's degree in a relevant field, admission is also possible for exceptional candidates who possess a relevant bachelor's degree.

Curricula for the graduate programs may be found in Section 5.9 of this Catalogue, while graduate course offerings may be found in Section 5.12.

5.5. RESEARCH AREAS AND LABORATORIES

Research is an important component of the Institute’s work. Our research laboratories provide venues for students to engage in creative work and cutting-edge research to provide electrical and electronic solutions to real-world problems, to advance the state of technology, and to contribute to the body of knowledge in the field. Currently we have the following research laboratories:

UP-Analog Devices Microelectronics Laboratory (MicroLab)
Lab head: Dr. Louis P. Alarcon

and

UP-Intel Microprocessors Laboratory (IML)
Lab head: Dr. Ma. Theresa G. de Leon

The IML and MicroLab are used for research in the design and development of radio-frequency CMOS integrated circuits, analog/mixed signal systems, and low-power microprocessors.

UP-Artesyn Power Electronics Laboratory (PEL)
Lab head: Engr. Gaudan Albert Chekov L. Castillo

This laboratory serves as a training ground to expose students to the various fields of power electronics. PEL research areas include power supplies and converters, electric vehicle charging, electric motor drives, LED lighting, power amplifiers, battery technology, and electromagnetic compatibility.

Computer Networks Laboratory (CNL)
Lab head: Dr. Roel M. Ocampo

Researches under this laboratory cover various rapidly-evolving aspects and applications of communications networks including but not limited to mobile systems, mobile systems, social networks, application-layer overlays, novel link/routing/transport protocols, cooperative community networks, low-overhead computing and networking, smart grids and smart homes, sensor networks, the Internet of Things (IoT), and big data.

Digital Signal Processing (DSP) Laboratory
Lab head: Engr. Michael Gringo Angelo R. Bayona

Research in the DSP Laboratory is geared towards DSP algorithm development and implementation. Areas of concentration include software and hardware embedded systems for real-time and non-real-time applications in audio, image, video and speech signal processing.

Electric Power Research Laboratory (EPRL)
Lab head: Dr. Allan C. Nerves

The EPRL is dedicated to research aimed at providing a safe, reliable, and optimum generation, distribution, conversion, measurement, and control of electric energy. Areas of concentration include modeling and simulation of electricity markets and power system dynamics; security assessment and stability enhancement for power systems in the restructured environment; and power system planning and optimal operation that ensure supply security, market competitiveness, and environmental sustainability.

Mobile Robotics (Mobot) Laboratory
Lab head: Engr. Percival D.C. Magpantay

This laboratory focuses on mobile robots and intelligence agents. Research thrusts include almost every aspect of electrical engineering, e.g. power electronics, instrumentation and control.
communications, embedded systems, artificial intelligence, and operating systems; and a little of computer science, mechanics, biology, and philosophy.

Innovation Research Center (IRC)
Lab head: Dr. Luis G. Sison

The research facility provides technology solutions in managing production resources, health care, and education. Its research thrusts are biomedical engineering; traffic, structural, and environmental monitoring; wireless sensor networks; and embedded systems and mechatronics; and hardware interfaces for interactive learning.

Power Simulations Systems Laboratory (PSSL)
Lab head: Dr. Jordan Rel C. Orillaza

Research areas include modeling, simulation, and optimization of electric power systems (reliability); and planning, protection, automation, control and power quality. The lab is equipped with power system simulation software and hardware simulators such as power system micro-models fitted with protective relays, remote terminal units (RTUs), and supervisory control and data acquisition (SCADA).

Robotics Automation Laboratory (RAL)
Lab head: Dr. Manuel C. Ramos, Jr.

This laboratory focuses on robotic manipulators, bipeds, and autonomous navigation. Research topics under RAL may include, but not limited to manipulator dynamics, motor drives, sensor development, and autonomous vehicles.

Smart Grid Research Center (SGRC)
Lab head: Dr. Michael Angelo A. Pedrasa

Research areas include design and implementation of smart grid building blocks; control and communication solutions for smart grids; demand side management; integration of renewable and distributed energy resources to electric power systems; microgrids; virtual power plants; smart buildings and smart homes; and regulatory aspects and market operations for smart grid.

Solar Photovoltaics Laboratory (SPL)
Lab head: Prof. Miguel T. Escoto, Jr.

As one of the leading research institutions for renewable energy research in the country, the SPL is continuously striving to develop, innovate, and promote novel energy technologies in order to uplift the quality of life for Filipino society and to safeguard the environment. Since its inception, the SPL has continually developed its expertise in many fields of renewable energy, advocates sustainable development, and the judicious use of energy resources through the implementation of its projects and programs.

Ubiquitous Computing Laboratory (UCL)
Lab head: Dr. Rowel O. Atienza

The UCL focuses on mobile, wearables and Internet of Things (IoT) research. UCL innovates on areas such as educational games (eg Animated Star Gram), human-device interaction (Slash the Fruit, Alien Antics and Holy Sheep!), virtual reality, animation, IoT protocols, and smart apps.

Wireless Communications Engineering Laboratory (WCEL)
Lab head: Engr. Miguel Carlo L. Purisima

The WCEL was established to provide instructional and training support, as well as to spearhead the research and development efforts of the Institute in the area of wireless communications technology. The lab primarily engages in the design, integration, analysis, and testing of wireless communication devices, circuits, and systems for various applications such as rural connectivity, emergency response, and public safety.

5.6 INSTRUCTIONAL FACILITIES

The Institute provides a wide range of facilities to support the instructional and research needs of its students, ranging from the 240-seater PLDT Multimedia Lecture Hall, numerous lecture rooms of various sizes, all the way down to meeting facilities for small group discussions. Students are also provided a number of areas for their own use where they can study, relax, or hold small discussions. Graduate students are also provided dedicated office spaces in addition to their work spaces in the laboratories.

The EEEI complements solid theoretical training with exposure and actual hands-on work in instructional laboratories on electronic components and circuits, embedded systems, communication systems, electric machines and motor drives, power system simulation, robotics and automation, prototyping, computer programming and computer networks. Many of these facilities are supported and endowed with state-of-the-art and industry-grade equipment by partners such as Alexan, Analog Devices, Artesyn, Intel, IXYS-Zilog, Meralco, PLDT, and Nokia, to name a few. These facilities ensure that students acquire sufficient practical skills in the design, implementation, operation and management of similar components or systems, making them "industry-ready" and well-prepared to solve engineering challenges out in the real world.
5.7 FACULTY AND STAFF

To date, the Institute has 48 full-time faculty members (10 on study leave), 16 lecturers, and 6 regular staff.

Institute Director
Dr. John Richard E. Hizon

Professors

Miguel T. Escoto, Jr.
M.S. Electrical Engineering
Worcester Polytechnic Institute, 1982
Power Electronics, Electric Motor Drives, Renewable Energy Systems

Rowena Cristina L. Guevara
Ph.D. Electrical Engineering (Systems)
University of Michigan, 1997
Digital Signal Processing for Audio, Music and Speech Signals

Joel Joseph S. Marciano, Jr.
Ph.D. Electrical Engineering
University of New South Wales, 2002
Wireless Communications, RF and Microwave Engineering

Allan C. Nerves
Ph.D. Electrical Engineering
Virginia Polytechnic Institute and State University, 1996
Power and Energy Systems, Electricity Markets

Manuel C. Ramos, Jr.
Ph.D. Electrical Engineering
Purdue University, 2002
Control Systems, Nonlinear Control, Robotics, Fuzzy Systems

Luis G. Sison
Ph.D. Electrical Engineering
Purdue University, 1999
Biomedical Engineering, Wireless Sensor Networks

Associate Professors

Rowel O. Atienza
Ph.D. Information Sciences Engineering
Australian National University, 2008
Human-Machine Interface

Anastacia B. Alvarez
Ph.D. Electrical Engineering
National University of Singapore (in progress)
Microelectronics, Computer Architecture, Digital Design and HDLs, Memory and Cache Design

Rhandley D. Cajote
Ph.D. Electrical Engineering
Chulalongkorn University, 2011
Image and Video Processing, Handwriting Recognition, Machine Vision, Stereo Imaging, Pattern Recognition

Rowaldo D. Del Mundo
M.S. Electrical Engineering
University of the Philippines Diliman, 1991
Power Systems, Electricity Markets and Regulation, Energy Planning

Roel M. Ocampo
Ph.D. Electrical and Electronics Engineering
University College London, 2007
Computer Networks

Jordan Rel C. Orillaza
Ph.D. Electrical Engineering
University of Canterbury, 2012
Electric Power Quality, Power System Modeling and Analysis, Electrical Machines

Michael Angelo A. Pedrasa
Ph.D. Electrical Engineering
University of New South Wales, 2011
Smart Grids, Power Systems Operation and Control, Energy Systems Modeling

Nestor Michael C. Tiglao
Ph.D. Electrical and Computer Engineering
Universidade Tecnica de Lisboa, 2013
Wireless Sensor Networks, Internet of Things

Assistant Professors

Louis P. Alarcon
Ph.D. Electrical Engineering and Computer Science
University of California, Berkeley, 2010
Microelectronics, Integrated Circuits, RF IC Design, Low-Power Processor Design

Adelson N. Chua
M.S. Electrical Engineering
University of the Philippines Diliman, 2014
Microprocessor Design, Digital Systems Design

Paul Jason R. Co
Ph.D. International Development Engineering
Tokyo Institute of Technology (in progress)
RF and Antennas, Wireless Communications

Ivan Benedict Nilo C. Cruz
Ph.D. Electrical and Electronics Engineering
University of the Philippines Diliman (in progress)
Power System Planning, Energy System Planning
Franz A. De Leon
Ph.D. Electrical and Electronics Engineering
University of Southampton, 2014
Audio and Communications Signal Processing,
Music Information Retrieval

Ma. Theresa G. De Leon
Ph.D. Electrical and Electronics Engineering
University of Southampton, 2014
Microelectromechanical Systems, Energy Harvesting,
Microfabrication Techniques, RF and Analog ICs,
On-Wafer Device Characterization

John Richard E. Hizon
Ph.D. Electrical Engineering
Imperial College London, 2011
RF IC Design, RISC Processors, Mixed Signal Circuits

Joy Alinda R. Madamba
Ph.D. Electrical and Electronics Engineering
University of the Philippines Diliman (in progress)
Computer Architecture, Digital IC Design

Rico Jossel M. Maestro
M.S. Electrical Engineering
University of the Philippines Diliman, 2015
Microelectronics

Percival D.C. Magpantay
Ph.D. Electrical and Electronics Engineering
University of the Philippines Diliman (in progress)
Microcontrollers, Sensors, Mobile Robotics
Power Electronics, Electric Motor Drives

Bienvenido M. Malquisito, Jr.
Ph.D. Electrical and Electronics Engineering
University of the Philippines Diliman (in progress)
Power System Protection, Automation and Control,
Power System Planning, Power Systems Simulations

Carl Michael F. Odulio
Ph.D. Electrical and Electronics Engineering
University of the Philippines Diliman (in progress)
Power Electronics, Electric Motor Drives

Jhoanna Rhodette I. Pedrasa
Ph.D. Electrical Engineering
University of New South Wales, 2010
Computer Networks, Mobile Systems,
Smart Grid Communications

Miguel Carlo L. Purisima
M.S. Electrical Engineering
University of the Philippines Diliman, 2014
Wireless Communications, RF and Microwave
Engineering, Signal Processing for Communications

Niño Christopher B. Ramos
Ph.D. Electrical Engineering
Osaka University (in progress)
Power Electronics, Renewable Energy Systems

Mark D. Rosales
Ph.D. Electrical Engineering,
University of Paris - Est Marne-la-Vallee’, 2014
RFIC Design, Electronic Prototyping

Marc Caesar R. Talampas
Ph.D. Electrical and Electronics Engineering
Nanyang Technological University (in progress)
Wireless Sensor Networks, Localization

Wilbert Rey D. Tarnate
M.S. Electrical Engineering
University of the Philippines Diliman, 2013
Power Systems Reliability, Electricity
Markets and Regulation

Adonis Emmanuel D.C. Tio
M.S. Electrical Engineering
University of the Philippines Diliman, 2013
Power System Reliability, Energy Systems Modeling

Lew Andrew R. Tria
Ph.D. Electrical Engineering
University of New South Wales (in progress)
Power Electronics, Magnetic Design,
Photovoltaic Systems

Instructors

Nicolette Ann A. Arriola
M.S. Electrical Engineering
University of the Philippines Diliman, 2015
Power Electronics, Solar Power

Michael Gringo Angelo R. Bayona,
M.S. Electrical Engineering
University of the Philippines Diliman, 2014
Speech Signal Processing, Synthesis and
Recognition, Natural Language Processing

Neil Irwin M. Bernardo
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)
Wireless Communications

Gaudan Albert Chekov L. Castillo
M.S. Electrical Engineering
University of the Philippines Diliman, 2014
Power Electronics, Linear and Switched Mode
Power Supplies, Electronic Motor Drives

Jaybie A. De Guzman
M.S. Electrical Engineering
University of the Philippines Diliman, 2013
Computer Networks, Communications
and Embedded Systems

Dale Joshua R. Del Carmen
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)
Digital Image Processing
Jasmin C. Del Rosario
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)
Power Electronics, Solar Photovoltaic Systems

Chris Vincent J. Densing
M.S. Electrical Engineering
University of the Philippines Diliman, 2013
Digital VLSI Circuits and Systems, Computer Architecture

Russel John D.C. Gallano
M.S. Electrical Engineering
University of the Philippines Diliman, 2014
Power System Dynamics and Stability, System Optimization, Microgrids

Paul Leonard Atchong C. Hilario
Ph.D. Physics
University of the Philippines Diliman, 2014
Photonics, Wavefront Engineering, Instrumentation Physics

Crisron Rudolf G. Lucas
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)
Speech Signal Processing

Path Rick L. Ramirez
M.S. Electrical Engineering,
University of the Philippines Diliman (in progress)
Wireless Communications, RF and Microwave Engineering, Antennas and Radio Propagation

Adrian C. Salces
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)
Wireless Communications, Microwave Engineering and Antenna Design

Christopher G. Santos
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)
Microelectronics, Mixed Signal Circuits

Lecturers

Luis M. Alarilla
Ph.D. Electrical Engineering
Iowa State University, 1974

Sukarno A. Ali
M. Community Development
University of the Philippines Diliman, 2001

Christiensen D.C. Arandilla
M.S. Electrical Engineering,
University of the Philippines Diliman (in progress)

Bryan Edward R. Ayson
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)

Sherry Joy Alvionne S. Baquiran
M.S. Electrical Engineering
University of the Philippines Diliman, 2014

Steven Matthew Cheng
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)

Mary Ann Z. Constante
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)

Calvin Artemis G. Hilario
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)

David Roman E. Kayanan
B.S. Electrical Engineering
University of the Philippines Diliman, 2015

Wilbert Jethro R. Limjoco
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)

Aristotle D. Lopez
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)

Romarie U. Lorenzo
M.S. Electrical Engineering
University of the Philippines Diliman, 2009

Aurelia C. Mechilina
Ph.D. Materials Science and Engineering
University of the Philippines Diliman (in progress)

Miro Jan Benedict G. Navarro
M.S. Electrical Engineering
University of the Philippines Diliman (in progress)

Leonard Bryan B. Paet
M.S. Electrical Engineering
University of the Philippines Diliman, 2011
Christian Raymund K. Roque
M.S. Electrical Engineering
University of the Philippines Diliman, 2005

Support Staff

Sukarno A. Ali
Precision Instrument Technician

Rogelio M. Lagahit, Jr.
Precision Instrument Technician

Ma. Dolores C. Pernia
University Research Associate

Cesar U. Regidor
Administrative Officer

Amelia M. Yanzon
Administrative Officer

Veronica B. Centeno
Administrative Assistant

CONTACT INFORMATION

Mail:
Electrical and Electronics Engineering Institute
EEEI Building
Velasquez Street
University of the Philippines Diliman
Quezon City 1101

Tel:
PLDT +63-2 925-2958
VoIP +63-2 981-8500 local 3300

Email:
admin@eee.upd.edu.ph

Website:
http://www.eee.upd.edu.ph
5.8 UNDERGRADUATE PROGRAMS CURRICULA

BACHELOR OF SCIENCE IN COMPUTER ENGINEERING, 2015

First Year

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>GE (AH 1) Eng 10 (College English)</td>
<td>3 0 3</td>
<td>17 6 19</td>
<td>GE (AH 2) Comm 3 (Pract Speech Fund)</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>GE (SSP 1) Philosophy (Philosophical Analysis)</td>
<td>3 0 3</td>
<td>17 6 19</td>
<td>Physics 71 (Elementary Physics I)</td>
<td>4 0 4</td>
</tr>
<tr>
<td></td>
<td>GE (SSP 2) 1 (Kasayasang ng Pil)</td>
<td>3 0 3</td>
<td>17 6 19</td>
<td>Math 53 (Elementary Analysis I)</td>
<td>5 0 5</td>
</tr>
<tr>
<td></td>
<td>Math 17 (Algebra and Trigonometry)</td>
<td>5 0 5</td>
<td>17 6 19</td>
<td>EEE 11 (Programming Fundamentals)</td>
<td>2 3 3</td>
</tr>
<tr>
<td></td>
<td>Chem 16 (General Chemistry)</td>
<td>3 6 5</td>
<td>17 6 19</td>
<td>EEE 31 (Introduction to EEE)</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>PE 4 (Physical Education)</td>
<td>(2)</td>
<td>17 6 19</td>
<td>PE 4 (Physical Education)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Math 54 (Elementary Analysis II)</td>
<td>5 0 5</td>
<td>18 6 20</td>
<td>Math 55 (Elementary Analysis III)</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>Math 72 (Elementary Physics II)</td>
<td>4 0 4</td>
<td>18 6 20</td>
<td>Math 114 (Linear Algebra)</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>EEE 13 (Programming Appl in EEE)</td>
<td>2 3 3</td>
<td>18 6 20</td>
<td>ES 1 (Engineering Design)</td>
<td>0 6 2</td>
</tr>
<tr>
<td></td>
<td>EEE 21 (Switching Theory & Dig Log Des)</td>
<td>3 0 3</td>
<td>18 6 20</td>
<td>ES 11 (Statics of Rigid Bodies)</td>
<td>2 3 3</td>
</tr>
<tr>
<td></td>
<td>EEE 33 (Electric Circuit Theory)</td>
<td>4 0 4</td>
<td>18 6 20</td>
<td>EEE 23 (Electromagnetic Fields I)</td>
<td>4 0 4</td>
</tr>
<tr>
<td></td>
<td>EEE 34 (Electrical Measurements Lab)</td>
<td>0 3 1</td>
<td>18 6 20</td>
<td>EEE 35 (Signals and Systems)</td>
<td>3 4 4</td>
</tr>
<tr>
<td></td>
<td>PE 4 (Physical Education)</td>
<td>(2)</td>
<td>18 6 20</td>
<td>PE 4 (Physical Education)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>NSTP 4 (National Service Training Program)</td>
<td>18 6 20</td>
<td>18 6 20</td>
<td>NSTP 4 (National Service Training Program)</td>
<td>18 6 20</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>GE (MST) 1 (STSC) (Science, Tech & Society)</td>
<td>3 0 3</td>
<td>16 9 19</td>
<td>GE (AH) 3 (Sikat, Kultura, at Lipunan)</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>ES 12 (Dynamics of Rigid Bodies)</td>
<td>2 3 3</td>
<td>16 9 19</td>
<td>EEE 51 (Electronic Circuits I)</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>EEE 25 (Probability & Stat for EEE Engs)</td>
<td>3 0 3</td>
<td>16 9 19</td>
<td>EEE 52 (Electronic Circuits Lab I)</td>
<td>0 3 1</td>
</tr>
<tr>
<td></td>
<td>EEE 41 (Intro to Semiconductor Devices & Circ)</td>
<td>3 0 3</td>
<td>16 9 19</td>
<td>EEE 53 (Electronic Circuits II)</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>EEE 42 (Semiconductor Devices & Circ)</td>
<td>0 3 1</td>
<td>16 9 19</td>
<td>EEE 100 (Elect Circuits Proto Lab)</td>
<td>0 3 1</td>
</tr>
<tr>
<td></td>
<td>EEE 43 (Electromechanical Energy Conv)</td>
<td>3 0 3</td>
<td>16 9 19</td>
<td>EEE 101 (Control Systems Theory)</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>CoE 23 (Synthesis of Sequential Circuits)</td>
<td>2 3 3</td>
<td>16 9 19</td>
<td>EEE 105 (Computer Organization)</td>
<td>3 3 4</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>GE (MST) 2 Free Choice</td>
<td>3 0 3</td>
<td>11 12 18</td>
<td>GE (AH) 5 Free Choice</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>EEE 54 (Electronic Circuits Lab II)</td>
<td>0 3 1</td>
<td>11 12 18</td>
<td>CoE 113 (Advanced Computer Org)</td>
<td>3 3 4</td>
</tr>
<tr>
<td></td>
<td>EEE 107 (Intro to Communication Systems)</td>
<td>2 3 3</td>
<td>11 12 18</td>
<td>CoE 115 (Introduction to Embedded Micro)</td>
<td>2 3 3</td>
</tr>
<tr>
<td></td>
<td>CoE 111 (Advanced Digital Design)</td>
<td>2 3 3</td>
<td>11 12 18</td>
<td>CoE 134 (Computer Systems Engg II)</td>
<td>1 3 2</td>
</tr>
<tr>
<td></td>
<td>CoE 133 (Computer Systems Engg I)</td>
<td>2 0 2</td>
<td>11 12 18</td>
<td>CoE 151 (Computer Networks)</td>
<td>3 3 4</td>
</tr>
<tr>
<td></td>
<td>CoE 135 (Operating Systems)</td>
<td>2 3 3</td>
<td>11 12 18</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
<td>11 12 18</td>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>GE (AH) 4 Free Choice</td>
<td>3 0 3</td>
<td>13 3 17</td>
<td>GE (AH) 5 Free Choice</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>GE (SSP) 4 Free Choice</td>
<td>3 0 3</td>
<td>13 3 17</td>
<td>GE (AH) 5 Free Choice</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>PI 100 (The Life and Works of Jose Rizal)</td>
<td>3 0 3</td>
<td>13 3 17</td>
<td>GE (MST) 3 Free Choice</td>
<td>3 0 3</td>
</tr>
<tr>
<td></td>
<td>CE 22 (Engineering Economy)</td>
<td>3 0 3</td>
<td>13 3 17</td>
<td>CoE 198 (Special Problems in CoE)</td>
<td>2 9 5</td>
</tr>
<tr>
<td></td>
<td>EEE 190 (Project Proposals)</td>
<td>1 3 2</td>
<td>13 3 17</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
<td>13 3 17</td>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Kas 1 and Fil 40 satisfy the 6-unit Philippine Studies requirement.
2. Nine (9) units of GE (AH) courses must be in Communication in English.
3. Except for Math 1, GE (MST) Math, Physics, Chem, ES, and EEE cannot be credited as GE courses.
4. For physical education (PE), the student is required to complete any 4 physical education (PE) courses.
5. As a requirement for graduation, all students must take six (6) units in one of the National Service Training Program (NSTP) components: Civic Welfare Training Service (CWTS), Literacy Training Service (LTS), and Reserved Officer's Training Corps Military Science (ROTC Mil Sci).

Total Number of Units = 181
BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING, 2015*

<table>
<thead>
<tr>
<th>First Year</th>
<th>Second Year</th>
<th>Third Year</th>
<th>Fourth Year</th>
<th>Fifth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>Second Semester</td>
<td>First Semester</td>
<td>Second Semester</td>
<td>First Semester</td>
</tr>
<tr>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
<td>Units</td>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
</tr>
<tr>
<td>GE (AH 1) Eng 10 (College English)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GE (AH 2) Comm 3 (Pract Speech Fund)</td>
</tr>
<tr>
<td>GE (SSP 1) Phil 1 (Philosophical Analysis)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Math 53 (Elementary Analysis I)</td>
</tr>
<tr>
<td>GE (SSP 2) Kas 1 (Kasaysayan ng Pil)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Physics 71 (Elementary Physics I)</td>
</tr>
<tr>
<td>Chem 16 (General Chemistry)</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>EEE 11 (Programming Fundamentals)</td>
</tr>
<tr>
<td>Math 17 (Algebra and Trigonometry)</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>EEE 31 (Introduction to EEE)</td>
</tr>
<tr>
<td>PE 1 (Physical Education)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>6</td>
<td>19</td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
<th>First Semester</th>
<th>Second Semester</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
<td>Units</td>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
</tr>
<tr>
<td>EEE 21 (Switching Theory & Dig Log Des)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EEE 33 (Electromagnetic Fields I)</td>
</tr>
<tr>
<td>EEE 13 (Programming Appl in EEE)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>EEE 35 (Signals and Systems)</td>
</tr>
<tr>
<td>EEE 33 (Electric Circuit Theory)</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>ES 11 (Statics of Rigid Bodies)</td>
</tr>
<tr>
<td>EEE 34 (Electrical Measurements Lab)</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>Math 55 (Elementary Analysis III)</td>
</tr>
<tr>
<td>Physics 72 (Elementary Physics II)</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>Math 114 (Linear Algebra)</td>
</tr>
<tr>
<td>Math 54 (Elementary Analysis II)</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>ES 1 (Engineering Drawing)</td>
</tr>
<tr>
<td>PE 2 (Physical Education)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSTP 3 (National Service Training Program)</td>
<td>(3)</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>6</td>
<td>20</td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
<th>First Semester</th>
<th>Second Semester</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
<td>Units</td>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
</tr>
<tr>
<td>GE (MST1) STS (Science, Tech & Society)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GE (AH 3) Fil 40 1 (Wika, Kultura, at Lipunan)</td>
</tr>
<tr>
<td>GE (SSP 3) Free Choice</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 143 (Electrical Machine Dyn & Ctrl)</td>
</tr>
<tr>
<td>EEE 25 (Probability & Stat for E&E Engrs)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EEE 44 (Electrical Machine Op & Ctrl)</td>
</tr>
<tr>
<td>EEE 41 (Intro to Semic Circ & Cir)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EEE 53 (Electrical Circuits II)</td>
</tr>
<tr>
<td>EEE 42 (Semic Devices & Circuits Lab)</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>EEE 54 (Electrical Circuits Lab II)</td>
</tr>
<tr>
<td>EEE 43 (Electromechanical Energy Conv)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EEE 100 (Electrical Circuits Proto Lab)</td>
</tr>
<tr>
<td>ES 12 (Dynamics of Rigid Bodies)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>EEE 101 (Control Systems Theory)</td>
</tr>
<tr>
<td>EEE 103 (Intro to Electric Power Systems)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EEE 103 (Intro to Electric Power Systems)</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>6</td>
<td>19</td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
<th>First Semester</th>
<th>Second Semester</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
<td>Units</td>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
</tr>
<tr>
<td>GE (AH 4) Free Choice 2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EEE 121 (Intro to Power Electronics)</td>
</tr>
<tr>
<td>EE 145 (Electrical Equipment & Devices)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 153 (Electric Power Distn Systems)</td>
</tr>
<tr>
<td>EE 146 (Electrical Power Measurement)</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>EEE 51 (Electrical Circuit I)</td>
</tr>
<tr>
<td>EEE 152 (Adv Power Systems Analysis)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>EEE 52 (Electrical Circuit Lab I)</td>
</tr>
<tr>
<td>EE 158 (Electrical System Design)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>EEE 105 (Computer Organization)</td>
</tr>
<tr>
<td>EEE 107 (Intro to Communication Systems)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ME 63 (Thermodynamics)</td>
</tr>
<tr>
<td>Elective</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>12</td>
<td>19</td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
<th>First Semester</th>
<th>Second Semester</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
<td>Units</td>
<td>Lect (hrs/wk)</td>
<td>Lab (hrs/wk)</td>
</tr>
<tr>
<td>GE (SSP 4) Free Choice</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GE (AH 5) Free Choice 4</td>
</tr>
<tr>
<td>GE (MST 2) Free Choice 3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GE (SSP 5) Free Choice</td>
</tr>
<tr>
<td>CE 22 (Engineering Economy)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GE (MST 3) Free Choice 4</td>
</tr>
<tr>
<td>Physics 73 (Elementary Physics III)</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>EE 198 (Special Problems in EE)</td>
</tr>
<tr>
<td>EEE 190 (Project Proposals)</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>PI 100 (The Life and Works of Jose Rizal)</td>
</tr>
<tr>
<td>Elective</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>3</td>
<td>18</td>
<td>Total</td>
</tr>
</tbody>
</table>

Total Number of Units = 184

Notes:

1. Effective AY 2010-2011. Total number of units = 184
2. Nine (9) units of GE (AH) courses must be in Communication in English
3. Except for Math 1, GE (MST) Math, Physics, Chem, ES, and EEE cannot be credited as GE courses
4. For physical education (PE), the student is required to complete any 4 physical education (PE) courses
5. Civic Welfare Training Service (CWTS), Literacy Training Service (LTS), and Reserved Officer’s Training Corps Military Science (ROTC Mil Sci)
BACHELOR OF SCIENCE IN ELECTRONICS AND COMMUNICATIONS ENGINEERING, 2015

First Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE (AH 1) Eng 10 (College English)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE (SSP 1) Philo 1 (Philosophical Analysis)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE (SSP 2) Kas 1' (Kasaysayan ng Pil)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Chem 16 (General Chemistry)</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Math 17 (Algebra & Trigonometry)</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>EEE 190 (Project Proposals)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EEE 21 (Sw Theory & Dig Log Des)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 25 (Prob & Stat for E&E Engrs)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 41 (Intro to Semicon Devices & Cir)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 42 (Semicon Devices & Circuits Lab)</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>EEE 43 (Electromechanical Energy Conv)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 44 (Electrical Machine Op & Ctrl)</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ES 12 (Dynamics of Rigid Bodies)</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ES 131 (Digital Communications)</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ECE 141 (Electron Devices)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ECE 143 (Electron Devices II)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 100 (Electr Devices Proto Lab)</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EEE 105 (Computer Organization)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EEE 101 (Control System Theory)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>6</td>
<td>19</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE (MST 1) STS (Science, Tech & Society)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 13 (Programming Appl in EEE)</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>EEE 33 (Electric Circuit Theory)</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EEE 34 (Electrical Measurements Lab)</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Physics 72 (Elementary Physics II)</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Math 54 (Elementary Analysis II)</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>PE † (Physical Education)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>NSTP ‡ (National Service Training Program)</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>6</td>
<td>20</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 141 (Digital Communications)</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ECE 53 (Electrons Circuits II)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECE 54 (Electrons Circuits Lab II)</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ECE 100 (Electr Devices Proto Lab)</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>EEE 105 (Computer Organization)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EEE 101 (Control System Theory)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE (SSP 3) Free Choice</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE (AH 5) Free Choice</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE (MST 2) Free Choice</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 22 (Engineering Economy)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 190 (Project Proposals)</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>3</td>
<td>20</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Lect (hrs/wk)</th>
<th>Lab (hrs/wk)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE (SSP 5) Free Choice</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE (AH 5) Free Choice</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE (MST 3) Free Choice</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 198 (Special Problems in ECE)</td>
<td>2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>EEE 190 (The Life and Works of Jose Rizal)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>

Notes:

- † Effective AY 2010-2011. Total number of units = 183.
- ‡ Kas 1 and Fil 40 satisfy the 6-unit Philippine Studies requirement.
- ‡ Nine (9) units of GE (AH) courses must be in Communication in English.
- ‡ Except for Math 1, GE (MST) Math, Physics, Chem, ES, and EEE cannot be credited as GE courses.
- † For physical education (PE), the student is required to complete any 4 physical education (PE) courses.
- ‡ As a requirement for graduation, all students must take six (6) units in one of the National Service Training Program (NSTP) components:
 - Civic Welfare Training Service (CWTS), Literacy Training Service (LTS), and Reserved Officer’s Training Corps Military Science (ROTC Mil Sci)
Master of Engineering in Electrical Engineering (M.Eng. EE)

PROGRAM CHECKLIST

A. Required Major Courses\(^1\) 15 units
B. Elective Courses\(^2\) 14 units
C. Comprehensive Examination
D. Seminar Course
 - EE 296 Seminar 1 unit

Notes:
1. Major Subject: Any creditable graduate-level EE course offered by the EEE Institute that is relevant to the area of specialization.
2. Elective: Any creditable graduate-level course that has been recommended for approval by the adviser and Institute graduate program committee; provided that all course prerequisites have been satisfied.

Master of Science in Electrical Engineering (M.S. EE)

PROGRAM CHECKLIST

A. Required Major Courses\(^1\) 14 units
B. Elective Courses\(^2\) 9 units
C. Thesis
 - EE 300 6 units
D. Seminar Course
 - EE 296 Seminar 1 unit

Notes:
1. Major Subject: Any creditable graduate-level EE course offered by the EEE Institute that is relevant to the area of specialization.
2. Elective: Any creditable graduate-level course that has been recommended for approval by the adviser and Institute graduate program committee; provided that all course prerequisites have been satisfied.
Doctor of Engineering in Electrical and Electronics Engineering (D.Eng. EEE)
Doctor of Philosophy in Electrical and Electronics Engineering (Ph.D. EEE)

For M.S. / M.Eng. Degree Holders

PROGRAM CHECKLIST

A. Major\(^1\) or Specialization\(^2\) Courses 24 units

B. Dissertation\(^3\)
 • EE 400 12 units

Notes:

\(^1\) Major Course: Any creditable Electrical and Electronics Engineering graduate course relevant to the field / area of specialization

\(^2\) Specialization Course: Any creditable graduate course relevant to the field of specialization, pre-approved by the adviser and for which all prerequisites have been satisfied

\(^3\) The student must submit a 12-unit dissertation where s/he makes an original contribution to the fundamental knowledge in the field (Ph.D.) or addresses an engineering problem of substance and develops a solution in a creative and distinguished manner (D.E.)

Doctor of Engineering in Electrical and Electronics Engineering (D.E. EEE)
Doctor of Philosophy in Electrical and Electronics Engineering (Ph.D. EEE)

For B.S. Degree Holders

PROGRAM CHECKLIST

A. Major\(^1\) Courses 24 units

B. Specialization Courses\(^2\) 12 units

C. Applied Mathematics 9 units

D. Dissertation\(^3\)
 • EE 400 12 units

Notes:

\(^1\) Major Course: Any creditable Electrical and Electronics Engineering graduate course relevant to the field / area of specialization

\(^2\) Specialization Course: Any creditable graduate course relevant to the field of specialization, pre-approved by the adviser and for which all prerequisites have been satisfied

\(^3\) The student must submit a 12-unit dissertation where s/he makes an original contribution to the fundamental knowledge in the field (Ph.D.) or addresses an engineering problem of substance and develops a solution in a creative and distinguished manner (D.E.)
5.10 UNDERGRADUATE PROGRAM RETENTION RULES

Students who wish to study and pursue careers in electrical and electronics engineering and any of its allied fields need to acquire a strong background in the fundamentals of mathematics, physics, and other engineering sciences, in addition to courses in their chosen field. To ensure that student aptitudes and interests match the rigors and demands of the program, and that graduates consistently meet the high quality standards expected of products of our programs, the Institute enforces academic retention rules that EEE undergraduate students must satisfy, in addition to existing College and University academic rules and regulations, in order to remain in good academic standing.

A student will be permanently dismissed from any EEE undergraduate program if he or she:

1. Incurs a grade other than a passing grade twice in any of these mathematics courses: (Math 17, Math 53, Math 54, Math 55);
2. Accumulates three or more grades other than passing grades in any combination of these mathematics courses (Math 17, Math 53, Math 54, Math 55);
3. Incurs a grade other than a passing grade twice in any of these basic EEE courses (EEE 23, EEE 31, EEE 33, EEE 35, EEE 41);
4. Accumulates three or more grades other than passing grades in any combination of these basic EEE courses (EEE 23, EEE 31, EEE 33, EEE 35, EEE 41)

For purposes of this retention rule, a ‘grade other than a passing grade’ includes the following: a 5.00, an unremoved 4.00, an unremoved ‘Inc’, or a ‘DRP’ recorded at the end of the semester or semesters under evaluation.

5.11 UNDERGRADUATE PROGRAMS COURSE DESCRIPTIONS

Computer Engineering (CoE)

CoE 23 Synthesis of Sequential Circuits. Minimization of synchronous sequential circuits; synthesis of synchronous sequential circuits using structured techniques; delays and hazards; asynchronous Huffman circuits; physical characteristics of logic gate implementations. Prereq: EEE 11, EEE 21, EEE 34. 5 h (2 lec, 3 lab) 3 u.

CoE 111 Advanced Digital Design. Combinational and sequential circuits; structured design; digital design using programmable devices; hardware description language (HDL)-based digital design; simulation; testing of digital circuits. Coreq: EEE 105. 5 h (2 lec, 3 lab) 3 u.

CoE 115 Introduction to Embedded Microcontrollers. Introduction to embedded microcontrollers in electronic and electromechanical systems. Hardware and software design techniques. System interfaces, data acquisition and control. High speed design techniques. Prereq: EEE 105. 5 h (2 lec, 3 lab) 3 u.

CoE 121 Introduction to Digital Signal Processing. Discrete-time systems in frequency domain; digital filter design; linear prediction and optimum linear filters. Prereq: EEE 25, EEE 35. 6 h (3 lec, 3 lab) 4 u.

CoE 123 Introduction to Digital Image and Video Processing. Digital image fundamentals; introduction to two-dimensional digital signal processing (DSP); image enhancements and restoration algorithms; image filters; image coding and compression; video coding and standards; some applications of video and image processing. Prereq: EEE 35. 6 h (3 lec, 3 lab) 4 u.

CoE 127 Audio and Speech Signal Processing. Fundamental audio synthesis concepts; advanced techniques of audio signal processing, analysis and modeling; engineering models for speech signal analysis, synthesis and recognition. Prereq: CoE 121. 5 h (2 lec, 3 lab) 3 u.
ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE

CoE 129 Real-Time Digital Signal Processing. Digital signal processor architectures; data converters; real-time concepts and programming; digital filtering; real-time spectral analysis. Prereq: CoE 121, EEE 105. 5 h (2 lec, 3 lab) 3 u.

CoE 134 Computer Systems Engineering II. Requirements analysis and elicitation. Architectural design. Implementation, testing and maintenance issues. Prereq: CoE 133. 4 h (1 lec, 3 lab) 2 u.

CoE 141 Introduction to Digital Integrated Circuit Design. Concepts, economics and trends of integrated circuits (IC); MOS transistor characteristics and models; basic digital building blocks; structured digital circuits and systems. Prereq: EEE 21, EEE 41. 6 h (3 lec, 3 lab) 4 u.

CoE 143 Introduction to Analog Integrated Circuit Design. IC fabrication processes; analog device modeling; circuit simulation; amplifiers, comparators and other analog systems. Prereq: EEE 51. 6 h (3 lec, 3 lab) 4 u.

CoE 197 Special Topics in Computer Engineering. Prereq: COI. 2-4 u. (any combination of lec or lab); may be repeated for additional credit provided that the special topic should be indicated for record purposes.

CoE 198 Special Problems in Computer Engineering. Prereq: Approved project proposal from EEE 190, research laboratory affiliation. 11 h (2 lec, 9 lab) 5 u.

Electronics and Communications Engineering (ECE)

ECE 113 Communication Electronics. Resonant circuits and filters. Analog modulation and demodulation circuits. Frequency synthesis and phase locked loops. Basic concepts in radio frequency (RF) circuit design. Other communications circuits. Prereq: EEE 53, EEE 54, EEE 100, EEE 107. 5 h (2 lec, 3 lab) 3 u.

ECE 117 Instrumentation Electronics. Sensors in control systems; signal conditioning; data acquisition systems; actuators and controllers; industry standards. Prereq: EEE 34, EEE 51. 5 h (2 lec, 3 lab) 3 u.

ECE 123 Digital Instrumentation and Control Techniques. A/D-D/A conversion; process control; fundamentals of robotics; data acquisition; real time applications. Prereq: EEE 101. 3 u.

ECE 129 Simulation and Control Laboratory. System modeling; computer-aided control system design and computer simulation; op amps as feedback compensators; DC motor dynamics and control; closed-loop control and responses to step and ramp inputs. Prereq: EEE 52/COI, EEE 101. 5 h (2 lec, 3 lab) 3 u.

ECE 131 Introduction to Robotics. Coordinate transformations; forward and inverse kinematics; manipulator dynamics; control of manipulators; path planning. Prereq: EEE 101, ES 12, ES 21/COI. 3 u.

ECE 141 Digital Communications. Sampling and quantization; baseband pulse transmission; multiplexing; digital modulation techniques; bit error rates and spectral efficiency; clock recovery; information theory and error control coding; spread spectrum modulation. Prereq: EEE 107. 5 h (2 lec, 3 lab) 3 u.

ECE 151 Communication Networks. Telephony; telephone traffic, switching and signaling systems; multiplexing; trunking theory; modem standards; optical communication systems; open systems interconnect (OSI) layers for communication systems. Prereq: EEE 107. 3 u.

ECE 153 Wireless Communications. Radiowave propagation; antenna basics; large-scale path loss models; small-scale fading; cellular and satellite communication systems; multiple access techniques; current topics of interest in wireless communications. Prereq: EEE 23; Coreq: ECE 141. 3 u.

ECE 155 Modern Audio Engineering. Fundamentals of sound and hearing; audio tests and measurements; electrical and environmental noise and noise reduction in audio systems; microphones and loudspeakers; audio processing electronics and acoustics; practical audio systems. Prereq: EEE 107. 5 h (2 lec, 3 lab) 3 u.

ECE 157 Microwave Engineering I. Review of electromagnetics; transmission line theory and wave-guides; the Smith chart; network analysis and port parameters; impedance matching; passive and active microwave circuits. Coreq: ECE 23, EEE 100. 3 u.

ECE 159 Microwave Engineering II. Microwave materials and processes; laminates; metals; solders; packaging; connectors; resistance, inductance, and capacitance (RLC) measurements; transmission lines; microstrip circuits; test and measurement equipment and software for microwave communication systems. Prereq: ECE 157, EEE 100. 5 h (2 lec, 3 lab) 3 u.

ECE 197 Special Topics in Electronics and Communications Engineering. Prereq: COI. 2-4 u. (any combination of lec or lab); may be repeated for additional credit provided that the special topic should be indicated for record purposes.

ECE 198 Special Problems in Electronics and Communications Engineering. Prereq: Approved project proposal from EEE 190, research laboratory affiliation. 11 h (2 lec, 9 lab) 5 u.

Electrical Engineering (EE)

EE 121 Introduction to Power Electronics. Switching converter principles, harmonics, pulse-width modulation, phase control and phase modulation. Single-phase and three-phase rectifiers. AC voltage controllers, DC/DC converters and DC/AC inverters. Converter transfer functions. Prereq: EEE 42, EEE 53. 5 h (2 lec, 3 lab) 3 u.

EE 123 Electric Motor Drives. Electric drive systems; steady-state analysis of direct current, induction, synchronous, and reluctance motor drives; efficiency, harmonics, and converter-motor interaction. Prereq: EE 121, EEE 43. 3 u.

EE 145 Electrical Equipment and Devices. Operating principles, characteristics and applications of transformers, switchgear, and other electrical equipment and devices used for power system protection and control. Prereq: EEE 43, EEE 103. 3 u.

EE 146 Electric Power Measurements and Equipment Characterization. Power measurements. Performance evaluation and parameter measurement of electrical machines and transformers. Prereq: EEE 43, EEE 44, EEE 103. 3 h (3 lab) 1 u.

EE 157 New Energy Systems. Non-conventional energy resources and conversion technologies; new energy systems for off-grid applications; grid integration issues of non-conventional and new energy systems; planning and operations of electric power systems with intermittent energy systems. Prereq: EEE 103. 3 u.

EE 158 Electrical System Design. Choice of systems and selection, arrangement and protection of components for power, lighting and auxiliary systems of residential, institutional, commercial, and industrial power systems; illumination design. Prereq: EEE 103. 5 h (2 lec, 3 lab) 3 u.

EE 197 Special Topics in Electrical Engineering. Coreq: COI. 2-4 u. (any combination of lec or lab); may be repeated for additional credit provided that the special topic should be indicated for record purposes.

EE 198 Special Problems in Electrical Engineering. Prereq: Approved project proposal from EEE 190, research laboratory affiliation. 11 h (2 lec, 9 lab) 5 u.

Electrical and Electronics Engineering (EEE)

EEE 1 Essentials of Electrical and Electronics Engineering. Analysis of alternating current (AC) and direct current (DC) circuits; motors and generators, characteristics and methods of control; diode and transistor circuits; current digital circuits and logic gates; transducers and transducer circuits; operational amplifiers; motor control; feedback control systems; introduction to digital control; programmable logic controllers. Prereq: ES 21/Math 121.1/equiv., Physics 72/102. 6 h (3 lec, 3 lab) 4 u.

EEE 3 Elementary Electrical Engineering. Fundamentals of electric and magnetic circuits; transformers; direct and alternating current machinery; elementary distribution systems and electrical wiring. Prereq: Math 54, Physics 72. 3 u.

EEE 4 Industrial Electronics and Equipment. Electrical measurements and some of their industrial applications. Operating principles, characteristics and application of electrical equipment. Equipment and devices used for system protection and control. Applications in power and industrial systems. Modern control devices in industry. Prereq: EEE 1 or EEE 3. Credits: 5 h (2 lec, 3 lab) 3 u.

EEE 5 Introduction to Semiconductor Devices and Circuit Theory. Elementary circuit analysis; semiconductor devices; introduction to transducers, operational amplifiers, and digital design. Prereq: Math 54, Physics 72, Physics 72.1. 6 h (3 lec, 3 lab) 4 u.

EEE 23 Electromagnetic Fields I. Vector analysis; steady electric and magnetic fields; dielectric and magnetic materials; time-varying fields. Maxwell’s equations; introduction to uniform plane waves and transmission lines; applications to electrical engineering. Coreq: Physics 72; Prereq: Math 55. 4 u.

EEE 25 Probability and Statistics for Electrical and Electronics Engineers. Review of descriptive statistics; combinatorial probability; single and bivariate random variables; expectation; sum of two independent random variables; introduction to estimation; introduction to random processes. Prereq: Math 55. 3 u.

EEE 34 Electrical Measurements Laboratory. Laboratory procedures and practice; data collection and analysis; laboratory documentation; standard electric instruments and circuits; basic electric circuit behavior; transducers. Coreq: EEE 33. 3 h (3 lab) 1 u.

EEE 41 Introduction to Semiconductor Devices and Circuits. Semiconductor devices: diodes, bipolar junction transistors, field effect transistors; device models and circuit applications; regions of operation; large and small signal modeling and analysis; semiconductor theory. Prereq: EEE 23, EEE 33. 3 u.

EEE 42 Semiconductor Devices and Circuits Laboratory. Characteristics, parameters, and non-idealities of actual diodes, bipolar junction transistors (BJTs) and field effect transistors (FETs); basic circuit applications. Prereq: EEE 34; Coreq: EEE 41. 3 h (3 lab) 1 u.

EEE 43 Electromechanical Energy Conversion. Basic principles; generalized machine model; direct current, synchronous and induction machines. Prereq: EEE 23, EEE 33. 3 u.

EEE 44 Electrical Machine Operation and Control. Operation and control of rotating machines. Motor and generator control devices and circuits. Programmable logic controllers. Prereq: EEE 34, Coreq: EEE 43. 3 h (3 lab) 1 u.

EEE 52 Electronic Circuits Laboratory I. Performance measurements and behavior analysis of analog circuits. Prereq: EEE 42; Coreq: EEE 51. 1 u.

EEE 54 Electronic Circuits Laboratory II. Construction, performance measurements and behavior analysis of pulse, wave-shaping, timing and digital circuits. Prereq: EEE 42; Coreq: EEE 53. 3 h (3 lab) 1 u.

EEE 100 Electronic Circuits Prototyping Laboratory. Basic prototyping skills for electronic circuits including soldering, schematic design entry, printed circuit board (PCB) layout and routing, PCB fabrication. Safe laboratory practices. Computer aided design tools. Overview of industrial prototyping processes and standards. Prereq: ES 1, EEE 42. 3 h (3 lab) 1 u.

EEE 101 Control Systems Theory. Continuous and discrete systems; open and closed loop systems; transfer functions; block diagrams. Signal flow graphs; state variables; state transition matrix; stability, controllability and observability. Prereq: ES 12, EEE 35; Coreq: EEE 41. 3 u.

EEE 107 Introduction to Communication Systems. Signals and spectra; noise and distortion; transmission, reception, and detection; continuous-wave modulation and baseband digital pulse modulation; examples of practical communication systems. Prereq: EEE 25, EEE 34, EEE 35. 5 h (2 lec, 3 lab) 3 u.

EEE 190 Project Proposals, Inspection Trips, and Seminars. Project proposal documentation and presentation; visits to companies, factories, and electrical power plants; seminars on topics such as research, technical writing, presentation skills, career planning, engineering ethics, and technopreneurship. Prereq: SS, research laboratory affiliation. 4 h (1 lec, 3 lab) 2 u.

REVITALIZED GENERAL EDUCATION COURSE

Electrical and Electronics Engineering (EEE)

EEE 10 Everyday EEE: Kuryente, Radyo, atbp. Electrical and electronics engineering in everyday life. 3 u.

5.12 GRADUATE PROGRAMS COURSE DESCRIPTIONS

Electrical Engineering (EE)

EE 212 Linear System Theory. Theory and application of discrete and continuous-time linear dynamical systems. Review of applied linear algebra; least-norm and least-squares methods. Autonomous linear dynamical systems; interpretations of eigenvalues, eigenvectors, matrix exponential, and invariant sets. Singular value decomposition with applications. Linear dynamical systems with inputs and outputs; transfer matrices. Observability and state estimation; controllability and state transfer. Examples and applications from digital filters, circuits, signal processing, and control systems. Prereq: EEE 35 and Math 114 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 221 Electronic Amplifier Design. Linear and non-linear models of field-effect and bipolar junction transistors at low and high frequencies; theory, design and application of class A, B, C, D, E, F amplifiers, wide band low-pass amplifiers, distributed amplifiers, power amplifiers, tuned amplifiers, feedback amplifiers, operational amplifiers, parametric amplifiers, sense amplifiers, and other special amplifiers; biasing; gain-bandwidth; noise mechanisms and low-noise design; passive components; performance evaluation and optimization; integrated circuit implementations; design projects. Prereq: COI. 4 u.

EE 233 Digital Control Systems Design. Z-transforms and state variable representation of discrete-time systems; models for mixed continuous and discrete-time systems; modeling asynchronous sampling; analysis and design by root locus, frequency response, and state-space techniques; controllability, observability and observer design; linear quadratic optimal control and state estimation; optimization and design issues of mixed continuous and discrete-time systems; inter sample behavior; robust control; sampling rate selection; effects of quantization and finite precision errors; multi-variable control and optimization; multirate systems; computer simulations; design projects. Prereq: EEE 101 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 240 Power Electronics I. Application of semiconductor devices and circuits to power systems; power control, conditioning, processing and switching. Prereq: EEE 53 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 241 Linear and Switching Power Supplies. Linear converters. Switchmode topologies. DC/DC, AC/DC, DC/AC converters. Applications. Power supply simulation. Prereq: EEE 53 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 244 Advanced Theory of Electrical Machines. Reference frames and generalized machine theory. Modeling and analysis of rotating machines during steady state, transient, and dynamic conditions. Prereq: EEE 43 or equiv. 3 u.

EE 246 Power Amplifiers. Linear amplification. Voltage and current mode amplifiers. Amplifier classes A, B, AB, C. Trans-conductance amplifiers. Composite amplifiers. Resonant and switchmode amplifiers. Prereq: EEE 53 or EE 121 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 247 Power Electronics II. Principles of steady state converter analysis. Steady state equivalent circuit modeling. Converter circuits. AC circuit modeling. Converter transfer functions. Prereq: EE 240 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 251 Fault Studies. Symmetrical components. Sequence impedances of transmission lines, synchronous machines and transformers. Phase-domain and sequence-domain analysis of unbalanced and simultaneous faults. Prereq: EEE 103 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 252 Load Flow Analysis. System modeling and matrix analysis of balanced and unbalanced three-phase power systems. Solution of a system of linear and nonlinear equations. Sparsity techniques and optimal ordering. Load flow of balanced and unbalanced three-phase power systems. Prereq: EEE 103 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 256 Power System Protection. Fundamental principles. Selection and application of protective devices and protection algorithms. Protection of transmission lines, transformers, generators, motors, buses, and other equipment. Phase and ground fault protection. Coordination of protective devices. Testing of relays and protection algorithms. Prereq: EEE 103 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 270 Digital Communications I. Methods of digital modulation and demodulation. Signal space methods in digital communications. Communication over AWGN and band-limited channels, including channel capacity. Carrier and symbol synchronization. Source coding and lossless compression. Channel coding, including block codes, convolutional codes and Viterbi decoding. Current topics of interest. Prereq: EEE 107 and EE 214 or equiv. 5 h (2 lec, 3 lab) 3 u.

EE 286 Digital Audio Signal Processing. Digital audio signal analysis and manipulation. Speech and musical instrument synthesis. Digital audio recording and reproduction. Prereq: EEE 35 and EEE 11, or COI. 5 h (2 lec, 3 lab) 3 u.

EE 290 Directed Studies. Independent study or investigation of directed, current research areas in electrical and electronics engineering. Collaborative peer discussion of study results and findings. Prereq: COI. 3 u.

EE 296 Seminar. 1 u. per sem; max. of 3 u.

EE 298 Special Problems. 3 u.; Course may be repeated for credit, up to a maximum of 12 units, provided that topics are different; topics to be indicated for record purposes.

EE 299 Electrical Engineering Project. Prereq: COI. 3 u.

EE 300 Thesis. 3 u. to 6 u.

EE 317 Mathematical Methods for Electromagnetics I. Analytical and numerical methods of solving practical problems in electromagnetics, including fundamental theorems, plane wave functions, cylindrical wave functions, variational techniques, geometric theory of diffraction, method of moments, finite difference time domain method and Galerkin's method. Computer programming exercises. Prereq: EE 217 and ES 204. 3 u.

EE 318 Mathematical Methods for Electromagnetics II. Variational techniques, geometric theory of diffraction, Galerkin's method, finite difference time domain method, method of moments; recent topics of interest; computer programming exercises. Prereq: EE 317 and ES 204. 3 u.

EE 320 Analysis and Design of High Performance Digital Integrated Circuits. Parasitic models and second order effects of field-effect and bipolar transistors, and interconnects; clock skew and other timing issues; design of high-performance combinational and sequential logic circuits; arithmetic and memory structures and devices; charge-coupled device circuits; signaling, synchronization, noise and clock and power distribution issues; extraction of circuit parameters from process parameters; optimization at the device and circuit levels; circuit-systems issues; design projects. Prereq: EE 226 Coreq: EE 325. 4 u.

EE 322 Analysis and Design of Monolithic Information Processing and Communication Circuits. Small and large-signal models of field-effect and bipolar transistors; amplifiers, switched capacitor networks, sample and hold, multiplexers, analog to digital and digital to analog converters, active filters, comparators, analog multipliers, relaxation oscillators, phase detectors, phase-locked loops, voltage-controlled oscillators, mixers, sampled-data filters, digital decimation and interpolation filters; charge-coupled device circuits; architectural and circuit level performance evaluation; design projects. Prereq: EE 220. Coreq: EE 325. 4 u.

EE 325 Semiconductor Devices II. Compound semiconductors and hetero-junctions; dielectric and optical properties; optical processes; physics and models of high-frequency, high-speed and optoelectronic devices including HFET, HBT, MESFET, quasi-ballistic transistors and other sub-micron transistor concepts, and charge-coupled devices. Prereq: EE 225. 3 u.

EE 326 Optoelectronic Devices. Optical properties and processes; optical detectors, light-emitting diodes, solar cells, modulators, switches, directional couplers, lasers and other of interest. Prereq: EE 325. 3 u.
EE 327 Advanced VLSI Design. Advanced VLSI technologies; system architecture; system behavior modeling in VHDL or C; CAD tools for standard cell, custom design or hybrid techniques; integration of heterogeneous CAD tools; automated and manual synthesis; advanced circuit design and testing methods; synthesis of the different levels of design hierarchy; design projects. Prereq: EE 227. 3 u.

EE 330 Optimal Control. Theoretical methods in optimal control theory. Topics include the review of the optimality conditions: Lagrange and Kuhn-Tucker. The calculus of variations and the Pontryagin minimum principle with applications to minimum energy problems. Geometric methods will be applied to the solution of minimum time problems. Computational methods, singular problems, observer theory, and sufficient conditions for existence of solutions are also discussed. Prereq: EE 212. 3 u.

EE 359 Power Systems Operation and Control. Modern power system operational and control problems and solution techniques, including load frequency control, automatic generation control, system voltage control, security assessment, state estimation, and contingency analysis. System control centers. Interconnected systems. Prereq: EEE 103 or equiv. 3 u.

EE 371 Microwave Integrated Circuits I. Computer-aided analysis and design of distributed circuit structures and their applications in passive and active microwave circuits including dividers, directional couplers, circulators, filters, transistor amplifiers, attenuators; experimental characterization; design projects. Prereq: EE 271 and EE 325. 3 u.

EE 372 Microwave Integrated Circuits II. Computer-aided analysis and design of distributed circuit structures and their applications in passive and active microwave circuits including transistor amplifiers, mixers, modulators, demodulators, oscillators, frequency converters, phase shifters, harmonic generators; noise models and low-noise design; monolithic MIC; fabrication processes of monolithic circuits; experimental characterization; design projects. Prereq: EE 371. 3 u.

EE 398 Special Problems. 3 u.

EE 400 Dissertation. 12 u.